Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We propose a light storage technique utilizing an array of photonic resonators that mimic atomic frequency comb memory. This method can be implemented on a solid-state photonic chip without requiring spectral hole burning. By eliminating the need for long preparation cycles and leveraging tunable photonic resonances, this approach offers high bandwidth, high efficiency, and a fast duty cycle simultaneously and without compromise.more » « less
-
Quantum memory devices with high storage efficiency and bandwidth are essential elements for future quantum networks. Solid-state quantum memories can provide broadband storage, but they primarily suffer from low storage efficiency. We use passive optimization and algorithmic optimization techniques to demonstrate nearly a sixfold enhancement in quantum memory efficiency. In this regime, we demonstrate coherent and single-photon-level storage with a high signal-to-noise ratio. The optimization technique presented here can be applied to most solid-state quantum memories to significantly improve the storage efficiency without compromising the memory bandwidth. Published by the American Physical Society2024more » « less
-
Detecting electronic hot spots is important for understanding the heat dissipation and thermal management of electronic and semiconductor devices. Optical thermoreflective imaging is being used to perform precise temporal and spatial imaging of heat on wires and semiconductor materials. We apply quantum squeezed light to perform thermoreflective imaging on micro-wires, surpassing the shot-noise limit of classical approaches. We obtain a far-field temperature sensing accuracy of 42 mK after 50 ms of averaging and show that a 256×256 pixel image can be constructed with such sensitivity in 10 min. We can further obtain single-shot temperature sensing of 1.6 K after only 10 μs of averaging, enabling a dynamical study of heat dissipation. Not only do the quantum images provide accurate spatiotemporal information about heat distribution but also the measure of quantum correlation provides additional information, inaccessible by classical techniques, which can lead to a better understanding of the dynamics. We apply the technique to both aluminum and niobium microwires and discuss the applications of the technique in studying electron dynamics at low temperatures.more » « less
An official website of the United States government
